E.TVA Smart Control Systems - SCS1000

Description

Digitisation is increasing more and more in the automotive sector. Modern vehicles and machines are equipped with numerous sensors and communication interfaces. The CAN bus technology and the SAE J1939 network protocol based on the CAN 2.0B specification form the standard for the cross-linking of components in utility vehicles of all kinds. The Smart Control Systems group developed by E-T-A combines intelligent systems, power distribution systems and components capable to communicate via CAN.

System size and high load currents play an important role in increasingly ingenious vehicle architecture, where space in the vehicle is limited

TheSCS3000 and SCS1000 series are extremely compact, intelligent power distribution systems. The programmable I/O controllers offer significant design and application flexibility, coupled with industryleading performance in one of the smallest form factors.

The SCS1000 is ideal in terms of upgradeability for fleet modernisation, retrofits and projects where space saving is paramount. The products are designed for use in harsh environments.

The SCS1000 modules are configured via an intuitive graphic programming software.

Order numbering code

Order numbers	Short description
SCS1000-16HS-DC	SCS1000-16 Power Distribution Unit for High Side Switching (16 channels) SCS1000-16HS-CS-XXX-YYY Customer specific versions XXX: Project index number depending on the region YYY: Version number
Order numbers (Accessories for testing and commissioning)	Short description
SCS1000-16HS-Con	SCS1000-16HS Connector set
SCS1000-16HS-Loom-X.Xm X.X: Selectable length of 1.0 m to 5.0 m (in 0.2 m graduations) Example: SCS1000-16HS-Loom- 1.2m	SCS1000-16HS cable harness

The software PDUsetup which is used to configure SCS1000 is available for download on the E-T-A website:
https://global.e-t-a.com/scs_software

SCS1000

Applications

Scope of applications:

- Specialty vehicles, construction machinery, agricultural machinery, trucks \& buses
- Intelligent power distribution
- Upgradeability and retrofit for fleet modernisation

Benefits

- Increased safety and diagnosis by way of real-time analysis and electronic load protection
- Space-saving and robust through efficient semi-conductor technology and optimised wiring
- Adapted to your needs, through customised software configuration

Approvals

Approval authority	Reference	Directive
VCA	E11*10R05/01*11361*02	ECE Reg. No. 10

EV•Å Smart Control Systems - SCS1000

Technical data SCS1000-16HS

Rated voltage	DC $12 \mathrm{~V} / 24 \mathrm{~V}$
Input voltage range	DC 9 V ... 32V
Total current	160 A
Quiescent current input	35 mA (depending on supply voltage)
Ambient temperature	$-40 \ldots+85^{\circ} \mathrm{C}$
Degree of protection	IP67
EMC	ECE Regulation No. 10 (E11)
Environment	Tested to ISO 16750
Mass	580 g
Dimensions	$174 \mathrm{~mm} \times 116 \mathrm{~mm} \times 51.7 \mathrm{~mm}$ (without mating connector)
Housing	Aluminium die-cast
Terminals	Tyco Leavyseal 39 Pin
Outputs	
4 high power outputs	32.5 A High Side 2 outputs PWM capable (125 Hz) Max Inrush: 45 A
12 additional outputs	15 A High Side 2 outputs PWM capable (125 Hz) Max Inrush: 25 A

Technical data SCS1000-16HS

Inrush handling for high current loads	Inrush limitation and capacitive soft start adjustable via software
Total error output	Configurable with related reset input
Overload	All outputs are short circuit and thermally protected Temperature and voltage based trip- ping depending on board temperature adjustable via software
48 soft outputs	8 bit variables, transmission via CAN frames
Inputs	0-32 V 4 inputs as thermistor inputs configurable, 3k pull-up-resistance via software activatable
12 digital/	8 bit variables, reception via CAN analogue inputs Configurable via software
48 soft inputs	

Interfaces

CAN $\quad 1 \times$ CAN 2.0B or SAE J1939

Dimension drawing SCS1000-16HS

ETVAR Smart Control Systems - SCS1000

Pin assignment SCS1000-16HS-AL

Connector 1		
Mating connector: TE 5-1718321-3, cap: 1418882-1		
Pin	Name	Description
1	OUTPUT \#01	High Side 32.5 A, PWM
2	OUTPUT \#02	High Side 32.5 A, PWM
3	OUTPUT \#03	High Side 32.5 A
4	OUTPUT \#04	High Side 32.5 A
5	OUTPUT \#05	High Side 15 A, PWM
6	OUTPUT \#06	High Side 15 A, PWM
7	OUTPUT \#07	High Side 15 A
8	OUTPUT \#08	High Side 15 A
9	OUTPUT \#09	High Side 15 A
10	OUTPUT \#10	High Side 15 A
11	OUTPUT \#11	High Side 15 A
12	OUTPUT \#12	High Side 15 A
13	OUTPUT \#13	High Side 15 A
14	OUTPUT \#14	High Side 15 A
15	OUTPUT \#15	High Side 15 A
16	OUTPUT \#16	High Side 15 A
17	CAN\#01	CAN Iow
18	CAN\#01	CAN high
19	INPUT\#01	Analogue 0-32 V, $3 \mathrm{k} \Omega$ activatable pull-up to 3.3 V
20	INPUT\#02	Analogue 0-32 V, $3 \mathrm{k} \Omega$ activatable pull-up to 3.3 V
21	INPUT\#03	Analogue 0-32 V, $3 \mathrm{k} \Omega$ activatable pull-up to 3.3 V
22	INPUT\#04	Analogue 0-32 V, $3 \mathrm{k} \Omega$ activatable pull-up to 3.3 V
23	INPUT\#05	Analogue 0-32 V
24	INPUT\#06	Analogue 0-32 V
25	INPUT\#07	Analogue 0-32 V
26	INPUT\#08	Analogue 0-32 V
27	INPUT\#09	Analogue 0-32 V
28	INPUT\#10	Analogue 0-32 V
29	INPUT\#11	Analogue 0-32 V
30	INPUT\#12	Analogue 0-32 V
31	SENSOR GND	Sensor mass, protected
32	WARNING AND RESET SW	Error output for LED to ground; for manual reset connect to ground
33	Power ground	Battery -
34	POWER IN (+ve)	Battery +
35	POWER IN (+ve)	Battery +
36	POWER IN (+ve)	Battery +
37	POWER IN (+ve)	Battery +
38	POWER IN (+ve)	Battery +
39	POWER IN (+ve)	Battery +

